SIGNIFICANCE OF TESTS FOR PETROLEUM PRODUCTS

BOLDT/HALL

ASTM AMERICAN SOCIETY FOR TESTING AND MATERIALS
NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

This book has been developed through the joint efforts of the American Society for Testing and Materials (ASTM) and the Institute of Petroleum (IP). ASTM, particularly its Committee D-2 on Petroleum Products and Lubricants, and IP are long-established sources of standard testing and evaluation methods for petroleum and petroleum products. Many of these standard methods are accepted internationally as yardsticks for the determination of product quality.

The purpose of this volume is to provide an informative reference text on the significance of ASTM and IP test results that are used in commercial transactions to definitively describe petroleum raw materials and petroleum products. To ensure orderly treatment, separate chapters have been prepared for each major raw material or end product. The general approach in each chapter is as follows:

(a) A definitive description of the raw material or product is presented along with its known or prospective use applications.

(b) The primary quality characteristics that define the material in those use applications are outlined.

(c) The particular tests and analytical procedures applicable to the quality assessment for the material are indicated.

(d) Suggestions for further reading are listed.

Each chapter has been written as an entity. Since many tests are applicable to several products, this results in a certain amount of repetition. Repetition was believed to be preferable to elaborate cross referencing.

Although this book will be revised periodically, there will be no assurance that the test methods or specifications cited are current. Up-to-date standards can be found in the appropriate volumes of the Annual Book of ASTM Standards and IP Standards for Petroleum and Its Products.
Related
ASTM Publications

LP-Gas Engine Fuels, STP 525 (1973), $4.75, 04-525000-12

Viscosity Index Tables for Celsius Temperatures, DS 39B (1975), $30.00, 05-039020-12
Acknowledgments

This volume has been developed over a number of years through the joint efforts of the American Society for Testing and Materials and the Institute of Petroleum. In the process, chapters have been written, revised, and rewritten until it became difficult to distinguish between author, reviewers, and editors. Hopefully, the following list of acknowledgments includes all who contributed to the process.

Editors
Kenneth Boldt Union Oil Company of California
B. R. Hall American Petroleum Institute

Associate Editor
W. D. Dysart Union Oil Company of California

Crude Oils
J. O'Donnell BP Research Centre, U.K.
C. E. Webber Sun Oil Company

Gaseous Fuels and Light Hydrocarbons
R. E. Cannon Gas Processors Association
C. A. Munson Petro-Tex Chemical Corp.
F. W. Selim Phillips Petroleum Co.

Petroleum Solvents
D. M. Fenton Union Oil Company of California
A. J. Goodfellow Carless, Capel and Leonard Ltd., U.K.
J. F. Hickerson Exxon Company, U.S.
S. A. Yuhas Exxon Chemicals

Automotive Gasoline
K. A. Boldt Union Oil Company of California
J. A. English Chevron Research Co.
R. L. Everett General Motors Corp.
S. T. Griffiths The Associated Octel Co., Ltd., U.K.
H. R. Porter Standard Oil Company of California
J. H. Macpherson Chevron Research Co.

Aviation Fuels
W. G. Dukek Exxon Research and Engineering Co.
R. I. Gottshall Gulf Research and Development Co.
D. T. McAllan BP Research Centre, U.K.
A. G. Robertson Shell International Petroleum Co., Ltd., U.K.

Diesel Engine and Nonaviation Gas Turbine Fuels
G. K. Brower International Harvester Co.
W. H. Kite, Jr. Exxon Research and Engineering Co.
J. A. McLain Caterpillar Tractor Company
R. E. Pegg Esso Research Centre, U.K.
C. C. Ward U.S. Department of the Interior, Bureau of Mines

Heating and Power Generation Fuels
J. R. Callaway Texaco, Inc.
W. H. Kite, Jr. Exxon Research and Engineering Co.
N. J. Schlesser Atlantic Richfield Company
G. G. Stephens BP Research Centre, U.K.

Lubricating Oils
J. B. Berkley Mobil Oil Company, Ltd., U.K.
J. W. Gaynor Amoco Oil Co.

Lubricating Greases
R. S. Barnes Amoco Chemicals Corp.
E. A. Goodchild Hoffman Manufacturing Co., Ltd., U.K.
A. T. Polishuk Sun Oil Company

Petroleum Waxes, Including Petrolatums
R. I. Gottshall Gulf Research and Development Co.
C. F. McCue Esso Research Centre, U.K.
G. A. Weisgerber Exxon Research and Engineering Co.

White Mineral Oils
V. Biske Burmah Oil Trading, Ltd., U.K.
C. F. W. Gebelein Pennsylvania Refining Co.

Petroleum Oils for Rubber
J. S. Sweely Sun Oil Company

Special acknowledgment is given to the Refining Department, American Petroleum Institute for project sponsorship and to T. W. Legatski as the original project coordinator.
Editorial Staff

Jane B. Wheeler, *Managing Editor*
Helen M. Hoersch, *Associate Editor*
Ellen J. McGlinchey, *Assistant Editor*
Kathleen P. Turner, *Assistant Editor*
Contents

Introduction
1

Chapter 1—Crude Oils
3
Introduction
3
Sampling
3
Preliminary Evaluation or Assay
4
 - **Gravity**
 - **Sulfur, Hydrogen Sulfide, and Mercaptan Sulfur**
 - **Salt Content**
 - **Water and Sediment**
 - **Viscosity and Pour Point**
 - **Metallic Contaminants**
 - **Distillation**
 - **Light Hydrocarbon Analysis**
 - **Characterization Factor**
Full or Comprehensive Evaluation
8
Crude Oil as a Power Generation Fuel
9
Applicable ASTM/IP Standards
12
Bibliography
13

Chapter 2—Gaseous Fuels and Light Hydrocarbons
14
Introduction
14
Natural Gas
14
Natural Gas Liquids (NGL)
14
Liquefied Refinery Gas (LR Gas)
15
Olefins and Diolefins
15
Quality Criteria
16
Natural Gas
17
Ethane
17
Liquefied Petroleum Gases
17
Natural Gasoline
18
Olefins and Diolefins
19
 - **Ethylene**
 - **Propylene Concentrates**
 - **Butylene Concentrates**
 - **Butadiene**
Applicable ASTM Specification
20
Applicable ASTM/IP Standards
20
Natural Gas and Ethane
20
Liquefied Petroleum Gas
20
Chapter 3—Petroleum Solvents

Introduction
General Uses
Product Requirements
Solvency
Volatility
Purity
Gravity
Odor
Toxicity
Air Pollution Requirements

Types of Hydrocarbons
Aliphatics
Naphthenes (Cycloparaffins)
Aromatics

Commercial Hydrocarbon Solvents
General Solvent Types
Specific Types of Solvents
Hexane and Heptane
Petroleum Ether
Textile Spirits
Lacquer Diluent
VM&P Naphtha
Ink Oils
Mineral Spirits
Benzene
Toluene
Xylene
Hi-Flash Solvent Naphtha
Kerosine

Test Methods for Solvents
Sampling
Specific Gravity
Distillation
Flash Point
Evaporation Rate
Kauri-Butanol Value
Aniline Point and Mixed Aniline Point
Sulfur
Dilution Ratio in Nitrocellulose Solutions
Viscosity of Nitrocellulose Solutions
<table>
<thead>
<tr>
<th>Chapter 4—Automotive Gasoline</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>Grades of Gasoline</td>
<td>41</td>
</tr>
<tr>
<td>Automotive Gasoline Performance and Information System</td>
<td>42</td>
</tr>
<tr>
<td>Antiknock Quality</td>
<td>42</td>
</tr>
<tr>
<td>Volatility</td>
<td>44</td>
</tr>
<tr>
<td>Other Properties</td>
<td>47</td>
</tr>
<tr>
<td>Workmanship and Contamination</td>
<td>47</td>
</tr>
<tr>
<td>Sulfur Content and Copper Strip Corrosion</td>
<td>47</td>
</tr>
<tr>
<td>Existent Gum and Stability</td>
<td>48</td>
</tr>
<tr>
<td>Gravity</td>
<td>48</td>
</tr>
<tr>
<td>Rust and Corrosion</td>
<td>49</td>
</tr>
<tr>
<td>Hydrocarbon Composition</td>
<td>49</td>
</tr>
<tr>
<td>Additives</td>
<td>49</td>
</tr>
<tr>
<td>Applicable ASTM Specification</td>
<td>50</td>
</tr>
<tr>
<td>Applicable ASTM/IP Standards</td>
<td>51</td>
</tr>
<tr>
<td>Bibliography</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5—Aviation Fuels</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>Historical Development of Aviation Fuels</td>
<td>53</td>
</tr>
<tr>
<td>Aviation Gasoline</td>
<td>54</td>
</tr>
<tr>
<td>Composition and Manufacture</td>
<td>54</td>
</tr>
<tr>
<td>Specifications</td>
<td>54</td>
</tr>
<tr>
<td>Content</td>
<td>54</td>
</tr>
<tr>
<td>Fuel Grades</td>
<td>54</td>
</tr>
<tr>
<td>Characteristics and Requirements</td>
<td>57</td>
</tr>
<tr>
<td>Antiknock Properties</td>
<td>57</td>
</tr>
<tr>
<td>Volatility</td>
<td>57</td>
</tr>
<tr>
<td>Density</td>
<td>60</td>
</tr>
<tr>
<td>Heat of Combustion</td>
<td>60</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>61</td>
</tr>
<tr>
<td>Storage Stability</td>
<td>61</td>
</tr>
<tr>
<td>Sulfur Content</td>
<td>62</td>
</tr>
<tr>
<td>Water Reaction</td>
<td>62</td>
</tr>
<tr>
<td>Aviation Turbine Fuels (Jet Fuels)</td>
<td>62</td>
</tr>
<tr>
<td>Background</td>
<td>62</td>
</tr>
<tr>
<td>Fuel Development</td>
<td>63</td>
</tr>
<tr>
<td>British Jet Fuels</td>
<td>63</td>
</tr>
<tr>
<td>American Military Jet Fuels</td>
<td>64</td>
</tr>
<tr>
<td>American Civil Jet Fuels</td>
<td>66</td>
</tr>
<tr>
<td>Russian Jet Fuels</td>
<td>66</td>
</tr>
<tr>
<td>Other Foreign Jet Fuels</td>
<td>66</td>
</tr>
<tr>
<td>International Standard Specifications</td>
<td>69</td>
</tr>
</tbody>
</table>
Sediment and Water Content 127
Ash Content 127
Carbon Residue 128
Sulfur Content 129
Distillation 129
Corrosion 130
Additional Tests 130
 Heat Content 130
 Stability 131
 Maximum Fluidity Temperature 132
 Thermal Stability of U.S. Navy Special Fuel Oil 132
 Spot Tests 132
Domestic Heating Oil Performance Evaluation 133
Kerosine Performance Evaluation 133
Selection of Burner 133
Burning Characteristics 134
 Initial Flame Height—Smoke Point 134
 Constancy of Feed to Wick 134
 Formation of Char on Wick 134
 Formation of Lamp-Glass Deposits 135
Standard Burning Tests 135
Burning Test for Long-Time Burning Oils 136
Applicable ASTM Specification 136
Applicable ASTM/IP Standards 136
Bibliography 137

Chapter 8—Lubricating Oils 138
Introduction 138
 Assessment of Quality 138
 Physical Tests 139
 Chemical Tests 139
 Physico-Chemical Tests 139
 Laboratory Bench Tests 139
 Engine and Rig Tests 139
 Significance of Tests 139
Composition and Manufacture 140
General Properties 140
 Viscosity 141
 Viscosity Index 142
 Cloud and Pour Points 143
 Flash and Fire Points 144
 Relative Density (Specific Gravity) and API Gravity 144
 Color 145
Automotive Engine Oils 145
 Properties 145
 Engine Test Specifications and Procedures 146
 Examination of Used Oils 147
Chapter 9—Lubricating Greases

Introduction
Composition
Properties
Calcium Soap Greases
Sodium Soap Greases
Lithium Soap Greases
Complex Soap Greases
ClayGreases
Evaluation of Properties and Significance
Consistency
Cone Penetration
NLGI Grades
Shear Stability
Prolonged Work Penetration
Roll Stability
Apparent Viscosity
Dropping Point
Oxidation Stability
Effect of Copper on Oxidation Rate
Effect of Grease on Copper
Oil Separation
Evaporation Loss
Rust Prevention
Lead in Greases
Water Washout
Extreme Pressure Timken Test
Extreme Pressure Four-Ball Test
Wear Preventive Characteristics of Grease
Leakage Tendencies of Wheel Bearing Greases
Functional Life of Ball Bearing Greases
Low-Temperature Torque
Torque Stability, Wear, and Brine Sensitivity of Ball Joint Greases
Greases in Ball Bearings at Elevated Temperatures
Greases in Small Bearings
Grease Flow Properties at High Temperatures
Deleterious Particles in Lubricating Grease
Applicable ASTM/IP Standards
Bibliography

Chapter 10—Petroleum Waxes, Including Petrolatums
Introduction
Occurrence and Refining of Waxes
Definitions
Applications for Wax
Quality Criteria
Criteria for Judging Physical Properties
Melting Point
Viscosity
Hardness
Strength of Wax
Criteria for Judging Chemical Properties
Color
Odor
Oil Content
Solvent Extractables
Boiling Point Distribution
Molecular Weight
Criteria for Food Grade Wax
Ultraviolet Absorptivity
Carbonizable Substances
Peroxide Content
Criteria for Judging Functional Properties
Wax Content of Substrates
Blocking Properties
Gloss
Slip Properties
Abrasion Resistance
Adhesion
Moisture Barrier Properties
Test Methods
Physical Properties of Petroleum Wax
Melting Point (Cooling Curve)
Drop Melting Point
Congealing Point
Kinematic Viscosity
Apparent Viscosity of Petroleum Waxes with Additives
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Viscosity of Hot Melt Adhesives and Coating Materials</td>
<td>190</td>
</tr>
<tr>
<td>Needle Penetration</td>
<td>190</td>
</tr>
<tr>
<td>Cone Penetration of Petrolatums</td>
<td>190</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>190</td>
</tr>
<tr>
<td>Modulus of Rupture</td>
<td>190</td>
</tr>
<tr>
<td>Chemical Properties of Petroleum Wax</td>
<td>190</td>
</tr>
<tr>
<td>Saybolt Color</td>
<td>190</td>
</tr>
<tr>
<td>ASTM/IP Color</td>
<td>191</td>
</tr>
<tr>
<td>Odor</td>
<td>191</td>
</tr>
<tr>
<td>Oil Content</td>
<td>191</td>
</tr>
<tr>
<td>Solvent Extractables</td>
<td>191</td>
</tr>
<tr>
<td>Distillation at Reduced Pressure</td>
<td>191</td>
</tr>
<tr>
<td>Boiling Range Distribution by Gas Chromatography</td>
<td>191</td>
</tr>
<tr>
<td>Molecular Weight by Vapor Pressure</td>
<td>192</td>
</tr>
<tr>
<td>Regulatory Test for Food Grade Wax</td>
<td>192</td>
</tr>
<tr>
<td>Ultraviolet Absorbance and Absorptivity</td>
<td>192</td>
</tr>
<tr>
<td>Carbonizable Substances</td>
<td>192</td>
</tr>
<tr>
<td>Peroxide Number</td>
<td>193</td>
</tr>
<tr>
<td>Functional Properties of Petroleum Wax</td>
<td>193</td>
</tr>
<tr>
<td>Weight of Surface Wax on Waxed Paper</td>
<td>193</td>
</tr>
<tr>
<td>Total Wax Loading of Corrugated Paperboard</td>
<td>193</td>
</tr>
<tr>
<td>Blocking Point</td>
<td>193</td>
</tr>
<tr>
<td>Pressure Blocking Point</td>
<td>194</td>
</tr>
<tr>
<td>20-Degree Specular Gloss of Waxed Paper</td>
<td>194</td>
</tr>
<tr>
<td>Gloss Retention</td>
<td>194</td>
</tr>
<tr>
<td>Coefficient of Kinetic Friction</td>
<td>194</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td>194</td>
</tr>
<tr>
<td>Sealing Strength</td>
<td>194</td>
</tr>
<tr>
<td>Water Vapor Permeability (Normal Atmosphere)</td>
<td>194</td>
</tr>
<tr>
<td>Water Vapor Permeability (High Humidity)</td>
<td>196</td>
</tr>
<tr>
<td>Inspections of Typical Petroleum Waxes</td>
<td>196</td>
</tr>
<tr>
<td>Applicable ASTM/IP Standards</td>
<td>196</td>
</tr>
<tr>
<td>Bibliography</td>
<td>197</td>
</tr>
</tbody>
</table>

Chapter 11—White Mineral Oils

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>198</td>
</tr>
<tr>
<td>Manufacture</td>
<td>198</td>
</tr>
<tr>
<td>Purity Guardianship</td>
<td>199</td>
</tr>
<tr>
<td>Assessment of Quality</td>
<td>199</td>
</tr>
<tr>
<td>Acid Test</td>
<td>201</td>
</tr>
<tr>
<td>Aniline Point</td>
<td>201</td>
</tr>
<tr>
<td>Cloud Point</td>
<td>201</td>
</tr>
<tr>
<td>Color and Transparency</td>
<td>201</td>
</tr>
<tr>
<td>Dielectric Breakdown Voltage</td>
<td>202</td>
</tr>
<tr>
<td>Distillation Range</td>
<td>202</td>
</tr>
<tr>
<td>Flash and Fire Point</td>
<td>202</td>
</tr>
</tbody>
</table>
Test method of Petroleum & its finished products are broadly classified as follows. 1. APPEARANCE (Visual, Colour, Particulate Contamination). 2. COMPOSITION (Acidity, Aromatics, Olefins, Sulfur). Ash test method is not valid for petroleum products containing ash forming additives, including certain phosphorus compounds, or lubricating oils containing lead, or used engine crankcase oils. In certain distillate oils. Prepared by ASTM Committee D-2 on Petroleum Products and Lubricants. ASTM SPECIAL TECHNICAL PUBLICATION 7C Kenneth Boldt Union Oil Company of California. editors B. R. Hall American Petroleum Institute. List price$11.75 04-007030-12. The purpose of this volume is to provide an informative reference text on the significance of ASTM and IP test results that are used in commercial transactions to definitively describe petroleum raw materials and petroleum products. To ensure orderly treatment, separate chapters have been prepared for each major raw material or end product. The general approach in each chapter is as follows: (a) A definitive description of the raw material or product is presented along with its known or prospective use applications.