SIGNIFICANCE OF TESTS FOR
PETROLEUM PRODUCTS

BOLDT/HALL

AMERICAN SOCIETY FOR TESTING AND MATERIALS
NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

This book has been developed through the joint efforts of the American Society for Testing and Materials (ASTM) and the Institute of Petroleum (IP). ASTM, particularly its Committee D-2 on Petroleum Products and Lubricants, and IP are long-established sources of standard testing and evaluation methods for petroleum and petroleum products. Many of these standard methods are accepted internationally as yardsticks for the determination of product quality.

The purpose of this volume is to provide an informative reference text on the significance of ASTM and IP test results that are used in commercial transactions to definitively describe petroleum raw materials and petroleum products. To ensure orderly treatment, separate chapters have been prepared for each major raw material or end product. The general approach in each chapter is as follows:

(a) A definitive description of the raw material or product is presented along with its known or prospective use applications.

(b) The primary quality characteristics that define the material in those use applications are outlined.

(c) The particular tests and analytical procedures applicable to the quality assessment for the material are indicated.

(d) Suggestions for further reading are listed.

Each chapter has been written as an entity. Since many tests are applicable to several products, this results in a certain amount of repetition. Repetition was believed to be preferable to elaborate cross referencing.

Although this book will be revised periodically, there will be no assurance that the test methods or specifications cited are current. Up-to-date standards can be found in the appropriate volumes of the Annual Book of ASTM Standards and IP Standards for Petroleum and Its Products.
Related
ASTM Publications

LP–Gas Engine Fuels, STP 525 (1973), $4.75, 04-525000-12

Viscosity Index Tables for Celsius Temperatures, DS 39B (1975), $30.00, 05-039020-12
Acknowledgments

This volume has been developed over a number of years through the joint efforts of the American Society for Testing and Materials and the Institute of Petroleum. In the process, chapters have been written, revised, and rewritten until it became difficult to distinguish between author, reviewers, and editors. Hopefully, the following list of acknowledgments includes all who contributed to the process.

Editors
Kenneth Boldt Union Oil Company of California
B. R. Hall American Petroleum Institute

Associate Editor
W. D. Dysart Union Oil Company of California

Crude Oils
J. O'Donnell BP Research Centre, U.K.
C. E. Webber Sun Oil Company

Gaseous Fuels and Light Hydrocarbons
R. E. Cannon Gas Processors Association
C. A. Munson Petro-Tex Chemical Corp.
F. W. Selim Phillips Petroleum Co.

Petroleum Solvents
D. M. Fenton Union Oil Company of California
A. J. Goodfellow Carless, Capel and Leonard Ltd., U.K.
J. F. Hickerson Exxon Company, U.S.
S. A. Yuhas Exxon Chemicals

Automotive Gasoline
K. A. Boldt Union Oil Company of California
J. A. English Chevron Research Co.
R. L. Everett General Motors Corp.
S. T. Griffiths The Associated Octel Co., Ltd., U.K.
H. R. Porter Standard Oil Company of California
J. H. Macpherson Chevron Research Co.

Aviation Fuels
W. G. Dukek Exxon Research and Engineering Co.
R. I. Gottshall Gulf Research and Development Co.
D. T. McAllan BP Research Centre, U.K.
A. G. Robertson Shell International Petroleum Co., Ltd., U.K.

Diesel Engine and Nonaviation Gas Turbine Fuels
G. K. Brower International Harvester Co.
W. H. Kite, Jr. Exxon Research and Engineering Co.
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. A. McLain</td>
<td>Caterpillar Tractor Company</td>
</tr>
<tr>
<td>R. E. Pegg</td>
<td>Esso Research Centre, U.K.</td>
</tr>
<tr>
<td>C. C. Ward</td>
<td>U.S. Department of the Interior, Bureau of Mines</td>
</tr>
</tbody>
</table>

Heating and Power Generation Fuels

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. R. Callaway</td>
<td>Texaco, Inc.</td>
</tr>
<tr>
<td>W. H. Kite, Jr.</td>
<td>Exxon Research and Engineering Co.</td>
</tr>
<tr>
<td>N. J. Schlesser</td>
<td>Atlantic Richfield Company</td>
</tr>
<tr>
<td>G. G. Stephens</td>
<td>BP Research Centre, U.K.</td>
</tr>
</tbody>
</table>

Lubricating Oils

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. B. Berkley</td>
<td>Mobil Oil Company, Ltd., U.K.</td>
</tr>
<tr>
<td>J. W. Gaynor</td>
<td>Amoco Oil Co.</td>
</tr>
</tbody>
</table>

Lubricating Greases

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. S. Barnes</td>
<td>Amoco Chemicals Corp.</td>
</tr>
<tr>
<td>E. A. Goodchild</td>
<td>Hoffman Manufacturing Co., Ltd., U.K.</td>
</tr>
<tr>
<td>A. T. Polishuk</td>
<td>Sun Oil Company</td>
</tr>
</tbody>
</table>

Petroleum Waxes, Including Petrolatums

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. I. Gottshall</td>
<td>Gulf Research and Development Co.</td>
</tr>
<tr>
<td>C. F. McCue</td>
<td>Esso Research Centre, U.K.</td>
</tr>
<tr>
<td>G. A. Weisgerber</td>
<td>Exxon Research and Engineering Co.</td>
</tr>
</tbody>
</table>

White Mineral Oils

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Biske</td>
<td>Burmah Oil Trading, Ltd., U.K.</td>
</tr>
<tr>
<td>C. F. W. Gebelein</td>
<td>Pennsylvania Refining Co.</td>
</tr>
</tbody>
</table>

Petroleum Oils for Rubber

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. S. Sweely</td>
<td>Sun Oil Company</td>
</tr>
</tbody>
</table>

Special acknowledgment is given to the Refining Department, American Petroleum Institute for project sponsorship and to T. W. Legatski as the original project coordinator.
Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Associate Editor
Ellen J. McGlinchey, Assistant Editor
Kathleen P. Turner, Assistant Editor
Contents

Introduction 1

Chapter 1—Crude Oils 3
 Introduction 3
 Sampling 3
 Preliminary Evaluation or Assay 4
 Gravity 4
 Sulfur, Hydrogen Sulfide, and Mercaptan Sulfur 4
 Salt Content 6
 Water and Sediment 6
 Viscosity and Pour Point 6
 Metallic Contaminants 7
 Distillation 7
 Light Hydrocarbon Analysis 8
 Characterization Factor 8
 Full or Comprehensive Evaluation 8
 Crude Oil as a Power Generation Fuel 9
 Applicable ASTM/IP Standards 12
 Bibliography 13

Chapter 2—Gaseous Fuels and Light Hydrocarbons 14
 Introduction 14
 Natural Gas 14
 Natural Gas Liquids (NGL) 14
 Liquefied Refinery Gas (LR Gas) 15
 Olefins and Diolefins 15
 Quality Criteria 16
 Natural Gas 17
 Ethane 17
 Liquefied Petroleum Gases 17
 Natural Gasoline 18
 Olefins and Diolefins 19
 Ethylene 19
 Propylene Concentrates 19
 Butylene Concentrates 19
 Butadiene 19
 Applicable ASTM Specification 20
 Applicable ASTM/IP Standards 20
 Natural Gas and Ethane 20
 Liquefied Petroleum Gas 20
Chapter 3—Petroleum Solvents

Introduction

General Uses

Product Requirements

Solvency

Volatility

Purity

Gravity

Odor

Toxicity

Air Pollution Requirements

Types of Hydrocarbons

Aliphatics

Naphthenes (Cycloparaffins)

Aromatics

Commercial Hydrocarbon Solvents

General Solvent Types

Specific Types of Solvents

Hexane and Heptane

Petroleum Ether

Textile Spirits

Lacquer Diluent

VM&P Naphtha

Ink Oils

Mineral Spirits

Benzene

Toluene

Xylene

Hi-Flash Solvent Naphtha

Kerosine

Test Methods for Solvents

Sampling

Specific Gravity

Distillation

Flash Point

Evaporation Rate

Kauri-Butanol Value

Aniline Point and Mixed Aniline Point

Sulfur

Dilution Ratio in Nitrocellulose Solutions

Viscosity of Nitrocellulose Solutions
Chapter 4—Automotive Gasoline

Introduction

Grades of Gasoline

Automotive Gasoline Performance and Information System

Antiknock Quality

Volutility

Other Properties

Workmanship and Contamination

Sulfur Content and Copper Strip Corrosion

Existant Gum and Stability

Gravity

Rust and Corrosion

Hydrocarbon Composition

Additives

Chapter 5—Aviation Fuels

Introduction

Historical Development of Aviation Fuels

Aviation Gasoline

Composition and Manufacture

Specifications

Content

Fuel Grades

Characteristics and Requirements

Antiknock Properties

Volutility

Density

Heat of Combustion

Freezing Point

Storage Stability

Sulfur Content

Water Reaction

Aviation Turbine Fuels (Jet Fuels)

Background

Fuel Development

British Jet Fuels

American Military Jet Fuels

American Civil Jet Fuels

Russian Jet Fuels

Other Foreign Jet Fuels

International Standard Specifications
Specification Requirements
Chemical Properties and Composition 69
Physical Properties—Contaminants 71
Density and Heat of Combustion 72
Volutility 72
Low-Temperature Properties 72
Combustion Quality 73
Water Retention and Separating Properties 73
Thermal Stability 74
Miscellaneous Properties 74
Inspection Data on Aviation Turbine Fuels 74
Aviation Fuel Additives 75
General 75
Additive Types 76
Tetraethyllead (TEL) 76
Color Dyes 76
Antioxidant (Gum Inhibitor) 76
Metal Deactivator 76
Corrosion Inhibitors 77
Fuel System Icing Inhibitor 77
Electrical Conductivity Improver (Antistatic Additive) 78
Nonspecification Additives 79
Biobor JF 79
Antismoke Additives 79
Ignition Control Additive 79
Additive Tests 80
Tetraethyllead 80
Color 80
Antioxidant, Metal Deactivator, Corrosion Inhibitor 80
Fuel System Icing Inhibitor 80
Electrical Conductivity Improver 80
Applicable ASTM Specifications 81
Applicable ASTM/IP Standards 81
Bibliography 83
Fuel Specification Guides 83
Appendixes 83
I. Automotive (Motor) Gasoline—Unsuitability for Aviation Use 83
II. Form for Inspection Data on Aviation Turbine Fuels 84
Chapter 6—Diesel Engine and Nonaviation Gas Turbine Fuels 85
Introduction 85
Diesel Engine 85
Nonaviation Gas Turbine 86
Combustion Process 87
Diesel Combustion 87
Nonaviation Gas-Turbine Combustion 90
Chapter 9—Lubricating Greases

Introduction
Composition
Properties
 Calcium Soap Greases
 Sodium Soap Greases
 Lithium Soap Greases
 Complex Soap Greases
 Clay Greases
Evaluation of Properties and Significance
 Consistency
 Cone Penetration
 NLGI Grades
 Shear Stability
 Prolonged Work Penetration
 Roll Stability
 Apparent Viscosity
 Dropping Point
 Oxidation Stability
 Effect of Copper on Oxidation Rate
 Effect of Grease on Copper
 Oil Separation
 Evaporation Loss
 Rust Prevention
 Lead in Greases
 Water Washout
 Extreme Pressure Timken Test
 Extreme Pressure Four-Ball Test
 Wear Preventive Characteristics of Grease
 Leakage Tendencies of Wheel Bearing Greases
 Functional Life of Ball Bearing Greases
Apparent Viscosity of Hot Melt Adhesives and Coating Materials 190
Needle Penetration 190
Cone Penetration of Petrolatums 190
Tensile Strength 190
Modulus of Rupture 190
Chemical Properties of Petroleum Wax 190
Saybolt Color 190
ASTM/IP Color 191
Odor 191
Oil Content 191
Solvent Extractables 191
Distillation at Reduced Pressure 191
Boiling Range Distribution by Gas Chromatography 191
Molecular Weight by Vapor Pressure 192
Regulatory Test for Food Grade Wax 192
Ultraviolet Absorbance and Absorptivity 192
Carbonizable Substances 192
Peroxide Number 193
Functional Properties of Petroleum Wax 193
Weight of Surface Wax on Waxed Paper 193
Total Wax Loading of Corrugated Paperboard 193
Blocking Point 193
Pressure Blocking Point 194
20-Degree Specular Gloss of Waxed Paper 194
Gloss Retention 194
Coefficient of Kinetic Friction 194
Abrasion Resistance 194
Sealing Strength 194
Water Vapor Permeability (Normal Atmosphere) 194
Water Vapor Permeability (High Humidity) 196
Inspections of Typical Petroleum Waxes 196
Applicable ASTM/IP Standards 196
Bibliography 197

Chapter 11—White Mineral Oils 198
Introduction 198
Manufacture 198
Purity Guardianship 199
Assessment of Quality 199
 Acid Test 201
 Aniline Point 201
 Cloud Point 201
 Color and Transparency 201
 Dielectric Breakdown Voltage 202
 Distillation Range 202
 Flash and Fire Point 202
Revised regularly since its first publication in 1934 (the sixth edition was published in 1993), this seventh-edition manual does not aim to present exhaustive coverage, but instead focuses on discussing what tests are done on various petroleum products, and why they are done. Twenty contributions...