Sharks Do Get Cancer: 
Few Surprises in Cartilage Research

As is the case for many alternative remedies, dozens of shark cartilage products for a variety of medical conditions are already on the market despite a lack of strong clinical evidence to support their effectiveness.

Although some laboratory studies have shown that shark cartilage may have antiangiogenic properties, it remains unclear whether future research will ultimately clarify troubling questions created by early human trials, some of which included a mixture of scientific conjecture and product promotion.

Folk remedies often carry the weight of convincing anecdotal experience, but the public interest in shark cartilage has been driven more by marketing than science, said Gary K. Ostrander, Ph.D., vice chancellor for research and graduate education at the University of Hawaii at Mānoa. “People want to believe this stuff. They’re desperate. They have limited time, limited resources,” he said.

For some, that belief came from a book published in 1992. In Sharks Don’t Get Cancer, author William Lane, Ph.D., published the results of this study in the July 1 issue of the journal Cancer. “When we set out to do this as a placebo-controlled evaluation … I would have loved to carry the banner of a positive study,” said Loprinzi.

Benefin, was manufactured by Lane Labs, a company run by his son. In 1999, the U.S. Food and Drug Administration pursued an injunction against the company for illegally promoting the product as a cancer treatment.

And when Benefin was tested in a placebo-controlled trial, no benefit was found. “It wasn’t well tolerated, there wasn’t any suggestion of benefit in terms of quality of life, there wasn’t any suggestion of benefit in terms of survival,” said Charles L. Loprinzi, M.D., a cancer researcher at the Mayo Clinic in Rochester, Minn., who published the results of this study in the Dec. 1, 2004, issue of Cancer Research, that also expounded on the dangers of pseudoscientific explanations for medical treatments.

Once Lane’s ideas came into the public, scientists began raising questions about the results of clinical studies he had conducted on cancer patients in Mexico and Cuba. “None of the work was ever published in a peer-reviewed research journal, and he was just playing with the artifacts,” said Ostrander. It also later came to light that the shark cartilage product that Lane was studying, Neovastat, was manufactured by Lane Labs, a company run by his son. In 1999, the U.S. Food and Drug Administration pursued an injunction against the company for illegally promoting the product as a cancer treatment.

But when Natural Standard assessed the clinical data that had so far been collected on shark cartilage treatments, they gave these therapies a grade of C for “unclear or conflicting scientific evidence” for use in cancer and in every other application studied.

“I wouldn’t take it or recommend anyone take it,” said Ulbricht, who also professor at the University of Texas M. D. Anderson Cancer Center in Houston and principal investigator for the NCI study. “The company has never made any money off of Neovastat,” said Lu. “It is being treated as if it were an experimental drug.”

Federal law allows natural products such as Neovastat and Benefin to be marketed as dietary supplements, although the companies cannot make specific disease claims for those products. Lane Labs, like many other companies, has taken advantage of that loophole to sell their remedies without clinical studies.

Loprinzi said it is important to conduct clinical trials on these products so that the public can know the truth about whether they work. “It’s appropriate for us to look at things that have a high profile that may not have as much scientific basis, but … a lot of interest among the public,” he said.

There is another reason to study popular remedies—sometimes they really do work, said Catherine Ulbricht, Pharm.D. “There might be something to public opinion that suggests something is helping or working,” said Ulbricht, chief editor at Natural Standard, an international research collaborative that aggregates and synthesizes data on complementary and alternative therapies.

But when Natural Standard assessed the clinical data that had so far been collected on shark cartilage treatments, they gave these therapies a grade of C for “unclear or conflicting scientific evidence” for use in cancer and in every other application studied.

“I wouldn’t take it or recommend anyone take it,” said Ulbricht, who also...
serves as the senior attending pharmacist at Massachusetts General Hospital in Boston. “I would need well-designed, hard-core randomized controlled trials. And once those were established, if they were positive or negative, I would need more to confirm those,” she said.

However, other people may need less convincing, she said. “If I had a life-threatening disease, my take on it might be a little more liberal.”

The results of Loprinzi’s study were not available when Natural Standard conducted their analysis, but his results aren’t likely to improve shark cartilage’s grade. Although there are other shark cartilage studies being planned, the evidence is already definitive enough for some people.

“Do we need to do more [shark cartilage] clinical trials in people? I think the data is pretty clear that we don’t,” said Ostrander, who cites the findings of overseas studies in reaching that conclusion. “Everything that I have seen and read suggests that there’s never going to be an effective therapy using shark cartilage,” he said. Ulbricht also noted that there were almost no data on the absorption and bioavailability of shark cartilage products in humans.

Although shark cartilage may lack support from clinical studies for use in oncology, some researchers still believe that laboratory studies of shark cartilage’s antiangiogenic properties may point to potential cancer-fighting compounds in cartilage.

“There is some rationale for why a shark cartilage product might work, and that is that in the cartilage there are not blood vessels,” said Loprinzi. “It is possible that there is some substance in one of the shark cartilage preparations that might have some benefit,” he said.

It’s also possible that media attention and public pressure have played a role in motivating clinical research into shark cartilage, but that doesn’t mean these products have nothing to offer, said Ulbricht. “Only time will tell,” she said. “There is new research being published every day in this area trying to elucidate the answer.”

—Joel B. Finkelstein

© Oxford University Press 2005. DOI: 10.1093/jnci/dji392
Although shark cartilage may lack support from clinical studies for use in oncology, some researchers still believe that laboratory studies of shark cartilage’s antiangiogenic properties may point to potential cancer-fighting compounds in cartilage. “There is some rationale for why a shark cartilage product might work, and that is that in the cartilage there are not blood vessels,” said Loprinzi. “It is possible that there is some substance in one of the shark cartilage preparations that might have some benefit,” he said. It’s also possible that media attention and public pressure have played a role in the growing threat of pseudoscience. Cancer Research 64:8485. Sharks may experience a lower incidence of cancer but the truth is that there is little known about the prevalence of cancer in sharks, or really any other wild animal. Shark experts have offered several blog posts in attempts to dispel this myth, driven by the ramifications of unsupported shark cartilage therapies on shark populations (see http://www.southernfriedscience.com/?p=7118). Related Questions. More Answers Below. Also see Sharks Do Get Cancer: Few Surprises in Cartilage Research Joel B. Finkelstein JNCI J Natl Cancer Inst (2 November 2005) 97 (21): 1562-1563. doi: 10.1093/jnci/dj3. Continue Reading. No, it is not.