To our parents
Olive and Paul Zumel
Peggy and David Mount
brief contents

PART 1 INTRODUCTION TO DATA SCIENCE ...1
 1 ▪ The data science process 3
 2 ▪ Loading data into R 18
 3 ▪ Exploring data 35
 4 ▪ Managing data 64

PART 2 MODELING METHODS ..81
 5 ▪ Choosing and evaluating models 83
 6 ▪ Memorization methods 115
 7 ▪ Linear and logistic regression 140
 8 ▪ Unsupervised methods 175
 9 ▪ Exploring advanced methods 211

PART 3 DELIVERING RESULTS ...253
 10 ▪ Documentation and deployment 255
 11 ▪ Producing effective presentations 287
PART 1 INTRODUCTION TO DATA SCIENCE1

1 The data science process 3

1.1 The roles in a data science project 3
 Project roles 4

1.2 Stages of a data science project 6
 Defining the goal 7 • Data collection and management 8
 Modeling 10 • Model evaluation and critique 11
 Presentation and documentation 13 • Model deployment and
 maintenance 14

1.3 Setting expectations 14
 Determining lower and upper bounds on model performance 15

1.4 Summary 17
2 Loading data into R 18
 2.1 Working with data from files 19
 Working with well-structured data from files or URLs 19
 Using R on less-structured data 22
 2.2 Working with relational databases 24
 A production-size example 25
 Loading data from a database into R 30
 Working with the PUMS data 31
 2.3 Summary 34

3 Exploring data 35
 3.1 Using summary statistics to spot problems 36
 Typical problems revealed by data summaries 38
 3.2 Spotting problems using graphics and visualization 41
 Visually checking distributions for a single variable 43
 Visually checking relationships between two variables 51
 3.3 Summary 62

4 Managing data 64
 4.1 Cleaning data 64
 Treating missing values (NAs) 65
 Data transformations 69
 4.2 Sampling for modeling and validation 76
 Test and training splits 76
 Creating a sample group column 77
 Record grouping 78
 Data provenance 78
 4.3 Summary 79

PART 2 MODELING METHODS ..81

5 Choosing and evaluating models 83
 5.1 Mapping problems to machine learning tasks 84
 Solving classification problems 85
 Solving scoring problems 87
 Working without known targets 88
 Problem-to-method mapping 90
 5.2 Evaluating models 92
 Evaluating classification models 93
 Evaluating scoring models 98
 Evaluating probability models 101
 Evaluating ranking models 105
8.2 Association rules 198
 Overview of association rules 199 • The example problem 200
 Mining association rules with the arules package 201
 Association rule takeaways 209

8.3 Summary 209

9 Exploring advanced methods 211

 9.1 Using bagging and random forests
to reduce training variance 212
 Using bagging to improve prediction 213 • Using random forests
to further improve prediction 216 • Bagging and random forest
takeaways 220

 9.2 Using generalized additive models (GAMs) to learn non-
monotone relationships 221
 Understanding GAMs 221 • A one-dimensional regression
example 222 • Extracting the nonlinear relationships 226
 Using GAM on actual data 228 • Using GAM for logistic
regression 231 • GAM takeaways 233

 9.3 Using kernel methods to increase data separation 233
 Understanding kernel functions 234 • Using an explicit kernel on
a problem 238 • Kernel takeaways 241

 9.4 Using SVMs to model complicated decision
boundaries 242
 Understanding support vector machines 242 • Trying an SVM on
artificial example data 245 • Using SVMs on real data 248
 Support vector machine takeaways 251

 9.5 Summary 251

PART 3 DELIVERING RESULTS253

10 Documentation and deployment 255

 10.1 The buzz dataset 256

 10.2 Using knitr to produce milestone documentation 258
 What is knitr? 258 • knitr technical details 261 • Using knitr
to document the buzz data 262
10.3 Using comments and version control for running documentation 266
 Writing effective comments 266 • Using version control to record history 267 • Using version control to explore your project 272
 Using version control to share work 276

10.4 Deploying models 280
 Deploying models as R HTTP services 280 • Deploying models by export 283 • What to take away 284

10.5 Summary 286

11 Producing effective presentations 287

11.1 Presenting your results to the project sponsor 288
 Summarizing the project’s goals 289 • Stating the project’s results 290 • Filling in the details 292 • Making recommendations and discussing future work 294
 Project sponsor presentation takeaways 295

11.2 Presenting your model to end users 295
 Summarizing the project’s goals 296 • Showing how the model fits the users’ workflow 296 • Showing how to use the model 299
 End user presentation takeaways 300

11.3 Presenting your work to other data scientists 301
 Introducing the problem 301 • Discussing related work 302 • Discussing your approach 302 • Discussing results and future work 303 • Peer presentation takeaways 304

11.4 Summary 304

appendix A Working with R and other tools 307
appendix B Important statistical concepts 333
appendix C More tools and ideas worth exploring 369
bibliography 375
index 377
Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. About the Book Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tool