Harvard University Physics 268r Spring 2012

Special Topics in Condensed Matter Physics. Quantum Many-Body Systems

Instructor Eugene Demler
Office: Lyman 322
Email: demler@physics.harvard.edu

Teaching Fellow Mehrtash Babadi
Office: Lyman 332
Email: mbabadi@physics.harvard.edu

Course Meetings TTh, 11:30 - 1:00 in Lyman 250
Course Grade Grading will be based on class participation (10%), homeworks (50%), and final projects (40%).

Office hours to be arranged

This course will review field theory methods and Greens function approach to quantum many-body systems. Subjects discussed will include interacting electron and phonon systems, magnetism and superconductivity, systems with disorder, low dimensional systems, systems of ultracold atoms, nonequilibrium phenomena. Prerequisite: Applied Physics 295a or equivalent.
1. Introduction to Green’s functions. Schroedinger equation approach. Lippman-Schwinger equation.
2. Path integral approach to quantum mechanics.
4. The partition function for Many-particle system. Functional integrals for Bose particles.
6. Analytic properties of Green’s functions. Linear response theory. Relation to experiments: STM, ARPES, RSXS.
10. Fermi edge singulatiry problem.
11. Disordered fermionic systems.
Useful books

• *Methods of quantum field theory in statistical physics*, A.A. Abrikosov, L. P. Gorkov, I.E. Dzyaloshinski, Dover publications (1963)

This course will review field theory methods and Greens function approach to quantum many-body systems. Subjects discussed will include interacting electron and phonon systems, magnetism and superconductivity, systems with disorder, low dimensional systems, systems of ultracold atoms, nonequilibrium phenomena. Prerequisite: Applied Physics 295a or equivalent. Tentative Outline of Lectures. 2.