Cement, Concrete, and Aggregates
Subject Index
Volume 16, 1994

A

Accelerated curing
Crack counts in air-entrained and non-air-entrained concrete subjected to accelerated and fog-room curing (Gillott, JE and Czarnecki, B), Dec., 110

Accelerated sulfate attack
Accelerated sulfate attack on concrete in a hot climate (Wafa, FF), June, 31

Acrylics
Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

Aggregates
Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36
Effects of different cementing materials and curing on concrete scaling (Afrani, I and Rogers, C), Dec., 132

Alkali reaction
Limits of application of the ASTM C 227 mortar bar test. Comparison with two other standards on alkali aggregate reactivity (Ranc, R, Isabelle, H, Clément, JY, and Sorrentino, D), June, 63

B

Book reviews
Concrete Structure, Properties, and Materials, 2nd Edition by Mehta and Monteiro (Volkman), Dec., 186
Concrete Technology: Past, Present and Future by Mehta (Swamy), Dec., 188
International Conference on Corrosion Protection of Steel in Concrete by Swamy (Mehta), Dec., 187

Bottom ash
Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36

C

Calorimetry
Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93

Capping methods
Effect of capping materials and procedures on the measured compressive strength of high-strength concrete (Lobo, CL, Mullings, GM, and Gaynor, RD), Dec., 173

Cement compounds
Mineral admixtures contribution to the development of heat of hydration and strength (Rahhal, VF and Batic, OR), Dec., 150

Cement content
Accelerated sulfate attack on concrete in a hot climate (Wafa, FF), June, 31

Cement mortars
Influence of size and hardness of sand particles and their proportions on the friction characteristics of cement mortars: a laboratory study (Kolias, S), Dec., 140

Cement paste caps
Effect of capping materials and procedures on the measured compressive strength of high-strength concrete (Lobo, CL, Mullings, GM, and Gaynor, RD), Dec., 173

Chemical attack
Accelerated sulfate attack on concrete in a hot climate (Wafa, FF), June, 31

Chloride
Effect of elevated curing temperature on the chloride permeability of high-strength lightweight concrete (Gjørv, OE, Tan, K, and Monteiro, PJM), June, 57
Influence of sulfate ions on chloride-induced reinforcement corrosion in portland and blended cement concretes (Al-Amoudi, OSB, Rasheeduzzafar, Maslehuddin, M, and Abduljauwad, SN), June, 3
Rapid chloride permeability testing of silica-fume concrete (Ozyildirim, C), June, 53

Compressive strength
Effect of capping materials and procedures on the measured compressive strength of high-strength concrete (Lobo, CL, Mullings, GM, and Gaynor, RD), Dec., 173
Effect of mold size and mold material on compressive strength measurement using concrete cylinders (Day, RL), Dec., 159
New nondestructive testing (NDT): torsion test to evaluate compressive strength in concrete structures (Di Maio, AA and Traversa, LP), June, 73
Strength measurement of concrete using different cylinder sizes: a statistical analysis (Day, RL), June, 21
Use of high volumes of Class C and Class F fly ash in concrete (Naik, TR, Ramme, BW, and Tews, JH), June, 12

Concrete
Hexavalent chromium in portland cement (Klemm, WA), June, 43

Concrete pavements
Influence of size and hardness of sand particles and their proportions on the friction characteristics of cement mortars: a laboratory study (Kolias, S), Dec., 140

Concrete prism test
Limits of application of the ASTM C 227 mortar bar test. Comparison with two other standards on alkali aggregate reactivity (Ranc, R, Isabelle, H, Clément, JY, and Sorrentino, D), June, 63

Corrosion
Laboratory measurements of corrosion activity of steel reinforcement in concrete using simple equipment (Wrobel, F), Dec., 100

Coulomb
Rapid chloride permeability testing of silica-fume concrete (Ozyildirim, C), June, 53

Crack counts
Crack counts in air-entrained and non-air-entrained concrete subjected to accelerated and fog-room curing (Gillott, JE and Czarnecki, B), Dec., 110
DURABILITY

Use of control specimens in freezing and thawing testing of concrete (Rutherford, JH, Langan, BW, and Ward, MA), June, 78

EDITORIAL

Is it time to re-think the C-1 and C-9 organization of standards committees related to the paste fraction of concrete? (Hooton, RD), June, 1

Use, misuse, and blind faith: ASTM test methods and guidance for dealing with alkali-silica reactivity (Hooton, RD), Dec., 91

EPOXY

Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

EXPANSION

Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

FIELD TESTING

Determination of water content of fresh concrete using a microwave oven (Nagi, M and Whiting, D), Dec., 125

FLATWORK

Strength evaluation of in-situ concrete by rebound hammer and core testing (Ward, MA and Langan, BW), Dec., 181

FLY ASH

Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93

Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36

Proportioning of fly ash cement concrete mixes (Shashiprakash, SG, Nagaraj, TS, Raviraj, S, and Yenagi, BV), Dec., 104

Use of high volumes of Class C and Class F fly ash in concrete (Naik, TR, Ramme, BW, and Tews, JH), June, 12

FREEZE-THAW RESISTANCE

Effects of different cementing materials and curing on concrete scaling (Afrani, I and Rogers, C), Dec., 132

FREEZING

Use of control specimens in freezing and thawing testing of concrete (Rutherford, JH, Langan, BW, and Ward, MA), June, 78

H-B

Hexavalent chromium
Hexavalent chromium in portland cement (Klemm, WA), June, 43

HIGH-PERFORMANCE CONCRETE

Optimization of the composition of a high-performance concrete (Rougeron, P and Alcicin, P-C), Dec., 115

HIGH STRENGTH CONCRETES

Effect of elevated curing temperature on the chloride permeability of high-strength lightweight concrete (Gjørv, OE, Tan, K, and Monteiro, PJM), June, 57

HYDRAULIC CEMENT

Cement strength variations: defining the solution (Gebhardt, RF), Dec., 167

INSTRUMENTS

Laboratory measurements of corrosion activity of steel reinforcement in concrete using simple equipment (Wrobel, P), Dec., 100

LIGHTWEIGHT CONCRETE

Effect of elevated curing temperature on the chloride permeability of high-strength lightweight concrete (Gjørv, OE, Tan, K, and Monteiro, PJM), June, 57

MASONRY

Construction materials made with coal combustion by-products (Wei, L, Naik, TR, and Golden, DM), June, 36

MICROWAVE OVENS

Determination of water content of fresh concrete using a microwave oven (Nagi, M and Whiting, D), Dec., 125

MINERAL ADMIXTURES

Mineral admixtures contribution to the development of heat of hydration and strength (Rahhal, VF and Batic, OR), Dec., 150

MIX PROPORTIONING

Proportioning of fly ash cement concrete mixes (Shashiprakash, SG, Nagaraj, TS, Raviraj, S, and Yenagi, BV), Dec., 104

MOLD MATERIAL

Effect of mold size and mold material on compressive strength measurement using concrete cylinders (Day, RL), Dec., 159

Strength measurement of concrete using different cylinder sizes: a statistical analysis (Day, RL), June, 21

MOLD SIZE

Effect of mold size and mold material on compressive strength measurement using concrete cylinders (Day, RL), Dec., 159

Strength measurement of concrete using different cylinder sizes: a statistical analysis (Day, RL), June, 21

MORTAR BAR TESTS

Limits of application of the ASTM C 227 mortar bar test. Comparison with two other standards on alkali aggregate reactivity (Ranc, R, Isabelle, H, Clement, JY, and Sorrentino, D), June, 63

MORTARS

Effect of curing on shrinkage and expansion of surface repair mortars (Durand, B and Mirza, J), June, 48

NONDESTRUCTIVE TESTING (NDT)

New nondestructive testing (NDT): torsion test to evaluate compressive strength in concrete structures (Di Maio, AA and Traversa, LP), June, 73

Strength evaluation of in-situ concrete by rebound hammer and core testing (Ward, MA and Langan, BW), Dec., 181

OPTIMIZATION

Optimization of the composition of a high-performance concrete (Rougeron, P and Alcicin, P-C), Dec., 115

PORTLAND CEMENT

Cement strength variations: defining the solution (Gebhardt, RF), Dec., 167

Hexavalent chromium in portland cement (Klemm, WA), June, 43

INFLUENCE OF SULFATE IONS ON CHLORIDE-INDUCED REINFORCEMENT CORROSION IN PORTLAND AND BlENDED CEMENT CONCRETES (Al-Aamoudi, OSB, Rasheeduzzafar, Maslehuddin, M, and Abduljauwad, SN), June, 3

MINERAL admixtures contribution to the development of heat of hydration and strength (Rahhal, VF and Batic, OR), Dec., 150
Reinforcement corrosion
Influence of sulfate ions on chloride-induced reinforcement corrosion in portland and blended cement concretes (Al-Amoudi, OSB, Rasheeduzzafar, Maslehuddin, M, and Abduljanwad, SN), June, 3

Scaling
Effects of different cementing materials and curing on concrete scaling (Afrani, I and Rogers, C), Dec., 132

Silica fume
Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93
Optimization of the composition of a high-performance concrete (Rougeron, P and Al'tcin, P-C), Dec., 115

Skid resistance
Influence of size and hardness of sand particles and their proportions on the friction characteristics of cement mortars: a laboratory study (Kolias, S), Dec., 140

Slags
Calorimetric study of cement blends containing fly ash, silica fume, and slag at elevated temperatures (Ma, W, Sample, D, Martin, R, and Brown, PW), Dec., 93

Statistical analysis
Strength measurement of concrete using different cylinder sizes: a statistical analysis (Day, RL), June, 21

Steel reinforcement
Laboratory measurements of corrosion activity of steel reinforcement in concrete using simple equipment (Wrobel, P), Dec., 100

Strain control
Crack counts in air-entrained and non-air-entrained concrete subjected to accelerated and fog-room curing (Gillott, JE and Czarnecki, B), Dec., 110

Strength
Cement strength variations: defining the solution (Gebhardt, RF), Dec., 167
Proportioning of fly ash cement concrete mixes (Shashiprakash, SG, Nagaraj, TS, Raviraj, S, and Yenagi, BV), Dec., 104
Strength evaluation of in-situ concrete by rebound hammer and core testing (Ward, MA and Langan, BW), Dec., 181

Sulfates
Influence of sulfate ions on chloride-induced reinforcement corrosion in portland and blended cement concretes (Al-Amoudi, OSB, Rasheeduzzafar, Maslehuddin, M, and Abduljanwad, SN), June, 3

Thawing
Use of control specimens in freezing and thawing testing of concrete (Rutherford, JH, Langan, BW, and Ward, MA), June, 78

Torsion test
New nondestructive testing (NDT): torsion test to evaluate compressive strength in concrete structures (Di Maio, AA and Traversa, LP), June, 73

Water content
Determination of water content of fresh concrete using a microwave oven (Nagi, M and Whiting, D), Dec., 125
Accelerated Curing is an IATF 16949:2016 and ISO 9001:2015 Registered Company established in 1994. We specialize in cost effective UV hard coating solutions for polycarbonate lenses. Our facility has two independent UV hard coat systems within Class 10,000 cleanrooms. Accelerated Curing Tank is used for concrete testing purposes. Its inner chamber is made of stainless steel and outer body is made of mild steel which is duly powder coated. It is Suitable for accommodating 6 or 12 cube moulds of 150mm.