Table of Contents

Preface
ECS Transactions, Volume 50, Issue 43
Electrochemical Capacitors

Preface

Chapter 1
Carbon

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Study of Using Chlorine and Hydrogen Chloride for Synthesis of Titanium Carbide Derived Carbon</td>
<td>3</td>
</tr>
<tr>
<td>I. Tallo, T. Thomberg, A. Jänes, E. Lust</td>
<td></td>
</tr>
<tr>
<td>Diameter Dependent Doping of Single-Walled Carbon Nanotube Used as Electrical Double Layer Capacitor Electrode</td>
<td>13</td>
</tr>
<tr>
<td>A. Al-Zubaidi, Y. Ishii, T. Matsushita, S. Kawasaki</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Doped Graphene as a High Efficient Electrode for Next Generation Supercapacitors</td>
<td>19</td>
</tr>
<tr>
<td>V. Chabot, F. M. Hassan, A. Yu</td>
<td></td>
</tr>
<tr>
<td>Dramatic Improvements in Electric Double-Layer Capacitors by Using Polysaccharides</td>
<td>27</td>
</tr>
<tr>
<td>M. Yamagata, S. Ikebe, Y. Kasai, K. Soeda, M. Ishikawa</td>
<td></td>
</tr>
<tr>
<td>Three Dimensional Graphene-CNTs Foam Architectures for Electrochemical Capacitors</td>
<td>37</td>
</tr>
<tr>
<td>W. Wang, S. Guo, I. Ruiz, M. Ozkan, C. S. Ozkan</td>
<td></td>
</tr>
<tr>
<td>Temperature effects in Activated Carbon Supercapacitors</td>
<td>45</td>
</tr>
<tr>
<td>D. W. Kirk, J. W. Graydon, S. Klas</td>
<td></td>
</tr>
<tr>
<td>Gel-Based Activated Carbon Electrode For Supercapacitors</td>
<td>53</td>
</tr>
<tr>
<td>V. Jouille, C. Galindo, M. Paté, P. Le Bar, M. Pham Thi</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2
Pseudocapacitance

Cathodic Synthesis of Birnessite Films for Pseudocapacitor Application
 T. Tanimoto, H. Abe, K. Tomono, M. Nakayama
 61

Polyaniline-MnO₂ Nanocomposite Supercapacitor Electrodes Prepared by
Galvanic Pulse Polymerization
 G. P. Pandey, A. C. Rastogi
 71

Polypyrrole-Covered MnO₂ as Electrode Material for Hydrid Supercapacitor
 A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, C. M. Julien
 79

EQCM Investigation on Electrodeposition and Charge Storage Behavior of
Birnessite-Type MnO₂
 M. Shamoto, T. Tanimoto, K. Tomono, M. Nakayama
 85

Tuning Electrolytic Manganese Dioxide for a High-Voltage Aqueous
Asymmetric Electrochemical Capacitor
 C. J. Jafta, F. Nkosi, L. LeRoux, M. A. Kebede, K. Makgopa, M. K. Mathe,
 N. Manyala, M. Oyama, K. I. Ozoemena
 93

Electrochemical Properties of Electrochemical Capacitors Using NiO Electrode
 103

Comparative Study of Electrode Stabilization Technique for Graphene-
Polyaniline Nanocomposite Electrodes Using Dielectrics for Supercapacitor
Applications
 S. Ketkar, M. K. Ram, A. Kumar, T. Weller, A. M. Hoff
 111

Organic-Inorganic Hybrid Materials for Supercapacitors
 V. Ruiz, J. Suarez-Guevara, P. Gomez-Romero
 117

Electrochemical Capacitors Based on Nitrogen-Enriched Cobalt (II)
Phthalocyanine/Multi-walled Carbon Nanotube Nanocomposites
 J. Lekitima, K. I. Ozoemena, N. Kobayashi
 125
Chapter 3
Devices and Applications

Development and Evaluation of an Asymmetric Capacitor with a Nickel/Carbon Foam Positive Electrode
B. C. Cornilsen, J. Wang, P. Sasthan Kuttipillai, T. N. Rogers, W. N. Yeo, M. B. Chye, A. Singh Bhatia

Polyacrylonitrile and 1-Ethyl-3-Methylimidazolium Thiocyanate Based Gel Polymer Electrolyte for Solid-State Supercapacitors with Graphene Electrodes
G. P. Pandey, A. C. Rastogi, C. R. Westgate

Novel NaClO₄ and NaPF₆ Based Non-Aqueous Electrolytes for Electrical Double Layer Capacitor Application
A. Laheäär, A. Jänes, E. Lust

N. Nambu, T. Satoh

Advances in Solid Electrochemical Capacitors
K. Lian, H. Gao, H. Wu

Specific Performance of Electrical Double-Layer Capacitors Based on Different Separator Materials and Non-Aqueous Electrolytes
K. Tõnurist, T. Thomberg, A. Jänes, E. Lust

Surface Characterization of Supercapacitor Electrodes after Long-Lasting Constant Current Tests
A. Jänes, J. Eskusson, R. Kanarbik, E. Lust

Testing of MnO₂ Aqueous Hybrid Supercapacitors under Extreme Climatic Conditions
A. J. Roberts, R. C. T. Slade

Electrochemical Capacitor Usable Power for Hybrid Electric Vehicle Applications as Determined from Transient Electrical Response
D. A. Corrigan, C. Fortin, A. Zabik

Thermodynamics in Porous Electrodes: A Monte Carlo Simulation Study
K. Kiyohara, K. Asaka
Having power and energy characteristics between batteries and conventional capacitors, electrochemical capacitors offer new
opportunities in electrical engineering and a fertile ground for the development and refinement of new electrode materials. This chapter
will begin by introducing the fundamentals of electrochemical double-layer capacitors and pseudocapacitors (Sect. 17.1). It will go on to
describe the most commonly used methods (Sect. Testing Electrochemical Capacitors-Electrochemical Impedance Spectroscopy. This
note describes electrochemical techniques for energy-storage devices. Electrochemical Impedance Spectroscopy. EIS is a widely
used technique to investigate electrochemical systems. The advantage of EIS is that it is generally non-destructive to the investigated
system. This enables the possibility for further electrochemical measurements and post-mortem investigations.
Electrochemical double layer capacitors, also known as supercapacitors or ultracapacitors, are energy storage elements with high energy density compared to conventional capacitors and high power density compared to batteries. Unlike conventional capacitors, where no chemical reactions is used and small amount of energy is stored by physically storing electric charges between two conductive