CORROSION
Causes and Prevention

BY
FRANK N. SPELLER, D.Sc.
Corrosion Consultant

THIRD EDITION

McGRAW-HILL BOOK COMPANY, INC.
NEW YORK AND LONDON
1951
PREFACE TO THE THIRD EDITION

Since the second edition of this book appeared, developments in the knowledge of corrosion, particularly of its prevention, have been truly remarkable. This has necessitated extensive revision and additions to this book. However, the author has endeavored to give a comprehensive view of the subject for the general reader without more technical detail than is necessary for a sound understanding of the many factors involved in this problem and the principles of corrosion prevention, based mainly upon ferrous metals. Data on the corrosion properties of nonferrous metals will be found in the "Corrosion Handbook" and in many technical papers.

Some phases of the subject could only be presented in outline without unduly extending the work. In such cases, selected references are given as a guide to the readers who desire to follow the subject in more detail. A general bibliography is not included in this edition as current monthly bibliographies are now available. New sections on Biological Influences and Cathodic Protection have been added.

The science of corrosion and its prevention has become so specialized that a general treatise necessarily requires the cooperation of those who have made a special study of certain phases of the subject. In preparing most of these chapters, the author has been greatly assisted by his long personal contacts with many friends in the various fields whose work he has respected and admired. Collaboration of this kind is gratefully acknowledged in the various sections. The plan of discussion as outlined in Chapter 1 is much the same as in previous editions.

Frank N. Speller

Pittsburgh, Pa.
January, 1951
CONTENTS

Preface to the Third Edition .. vii
Preface to the First Edition ... ix

PART I. GENERAL PRINCIPLES ... 3

1. Introductory Outline ... 3

2. Nature and Mechanism of Corrosion—Theories of Corrosion 8
 Discussion of established facts and factors—Electrochemical reactions
 (popular and technical discussion)—Applications of electrochemical
 principles in explanation of corrosion and pitting of metals—Causes of
 potential differences—Surface films—Passivity—Outline of older
 theories—Conclusions.

3. Influence of Methods of Manufacture and Treatment 58
 Brief description of the methods of manufacture and fabrication of iron
 and steel (from the blast furnace to the finished product) as these may
 affect resistance of the metal to corrosion—Wrought iron vs. steel—
 Nonmetallic inclusions—Strain—Mill scale—Finishing operations—
 Ancient iron.

4. Influence of Factors Internal to the Metal—Composition 94
 Influence of carbon, manganese, phosphorous, sulfur, silicon, nickel,
 chromium, copper, and some rarer elements, on corrodibility of iron and
 steel—Corrosion—resistance of high-ferrous alloys containing nickel,
 chromium, and combinations of these elements—High-temperature
 oxidation—Conclusions.

5. Influence of Factors External to the Metal—Classification of
 Corrosion .. 162
 Factors controlling the transfer of dissolved oxygen to the metal surface
 (such as temperature, rate of motion, films and coatings, and concentra-
 tion of dissolved substances)—Effects of carbon dioxide, hydrogen sul-
 fide, acids, alkalies, salts, oxidizing compounds, and other miscellaneous
 factors—Factors influencing localization of corrosion (such as dissimilar
 materials in contact and concentration cells)—Biological influences—
 A system of classification of the various types of corrosion—Corrosion
 fatigue—Cavitation—Conclusions.

6. Principles and Methods of Corrosion Testing 244
 General principles and specifications for corrosion testing—Types of
 laboratory and service tests in the atmosphere, submerged in water or in
 chemical solutions, and underground—Conclusions.

xi
PART II. PREVENTIVE MEASURES

7. Prevention of Corrosion in the Atmosphere 297
 Controlling factors—Preparation of metal surface for coating—Non-metallic protective coatings (such as paints, oxides, phosphates, cement and concrete, bituminous materials, slushing compounds)—Metallic protective coatings (zinc, aluminum, cadmium, lead, tin, copper, nickel, and chromium)—Clad metal—Structural design and maintenance—Conclusions.

8. Prevention of Corrosion Underwater 361
 Controlling factors—Artificial protective coatings (paints, metals, bituminous materials, cement and concrete)—Natural protective coatings, including use of alkalis, soluble silicates, and inhibitors—Application of water treatment to water supply systems, cooling systems, and brine in refrigeration—Conclusions.

 Practical significance of oxygen in solution—Oxygen removal by chemical means (deactivation by iron)—Mechanical removal of gases from water (deoxygenation)—Types of deactivators and deaerators (tray and spray types)—Combination systems for removing dissolved gases—Conclusions.

10. Prevention of Corrosion in Steam Generators 444
 Important factors—Feed-water treatment—Boiler cracking—Preventive measures, applied to stationary, locomotive, and marine practice—Economizers—Turbines—Superheaters—Electrolytic protection—General precautions for care of boilers—Conclusions.

11. Prevention of Corrosion in Steam and Hot-water Heating Systems 474
 Controlling factors—Special feed-water treatment required to control purity of steam—Protection of heating systems served by central heating plants—Volatile inhibitors—Conclusions.

12. Prevention of Corrosion in Chemical Industries 497
 Reactions and controlling factors—Results of experimental investigations on commonly used materials—Petroleum-refinery problems—Selection of materials—Types of materials used in chemical industries (ferrous metals, nonferrous metals, nonmetallic materials)—Conclusions.

13. Prevention of Corrosion Underground 541
 Important factors—Types of soil corrosion—Oil field production and transportation problems—Corrosion fatigue—Protective measures (metallic coatings, bituminous materials, reinforced bituminous, mastic,
14. **Stray-current Corrosion (Electrolysis)** .. 605
 Principles and definitions—Electrolysis testing—Instruments—Methods of mitigation—Summary of good practice.

15. **Cathodic Protection** ... 620
 Principles—Application—Selection of most suitable system—Rectified current vs. galvanic anodes—Location of anodes—Economics—Conclusions.

Appendix ... 633

Index .. 665
Microorganisms cause contamination or an infectious disease. Causes of Infection. An infection can be brought on by. Viruses. Infection control and prevention. The basic principles employed in stopping the spread of infection will be the same in every situations, whether or not clients are looked after the city, in aged cared facilities, in day treatment centers or in hospitals. Find research articles on cancer causes and prevention, which may include news stories, clinical trials, blog posts, and descriptions of active studies. National Cancer Institute at the National Institutes of Health. FOLLOW US.