Table of Contents

Preface iii

Chapter 1 Carbon

Comparative Study of Using Chlorine and Hydrogen Chloride for Synthesis of Titanium Carbide Derived Carbon
I. Tallo, T. Thomberg, A. Jänes, E. Lust 3

Diameter Dependent Doping of Single-Walled Carbon Nanotube Used as Electrical Double Layer Capacitor Electrode
A. Al-Zubaidi, Y. Ishii, T. Matsushita, S. Kawasaki 13

Nitrogen Doped Graphene as a High Efficient Electrode for Next Generation Supercapacitors
V. Chabot, F. M. Hassan, A. Yu 19

Dramatic Improvements in Electric Double-Layer Capacitors by Using Polysaccharides
M. Yamagata, S. Ikebe, Y. Kasai, K. Soeda, M. Ishikawa 27

Three Dimensional Graphene-CNTs Foam Architectures for Electrochemical Capacitors
W. Wang, S. Guo, I. Ruiz, M. Ozkan, C. S. Ozkan 37

Temperature effects in Activated Carbon Supercapacitors
D. W. Kirk, J. W. Graydon, S. Klas 45

Gel-Based Activated Carbon Electrode For Supercapacitors
V. Jouille, C. Galindo, M. Paté, P. Le Barby, M. Pham Thi 53
Chapter 2
Pseudocapacitance

Cathodic Synthesis of Birnessite Films for Pseudocapacitor Application
T. Tanimoto, H. Abe, K. Tomono, M. Nakayama

Peroxaniline-MnO2 Nanocomposite Supercapacitor Electrodes Prepared by
Galvanic Pulse Polymerization
G. P. Pandey, A. C. Rastogi

Polyprpyrole-Covered MnO2 as Electrode Material for Hydrid Supercapacitor
A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, C. M. Julien

EQCM Investigation on Electrodeposition and Charge Storage Behavior of
Birnessite-Type MnO2
M. Shamoto, T. Tanimoto, K. Tomono, M. Nakayama

Tuning Electrolytic Manganese Dioxide for a High-Voltage Aqueous
Asymmetric Electrochemical Capacitor
C. J. Jafta, F. Nkosi, L. LeRoux, M. A. Kebede, K. Makgopa, M. K. Mathe,
N. Manyala, M. Oyama, K. I. Ozoemen

Electrochemical Properties of Electrochemical Capacitors Using NiO Electrode

Comparative Study of Electrode Stabilization Technique for Graphene-
Polyaniline Nanocomposite Electrodes Using Dielectrics for Supercapacitor
Applications
S. Ketkar, M. K. Ram, A. Kumar, T. Weller, A. M. Hoff

Organic-Inorganic Hybrid Materials for Supercapacitors
V. Ruiz, J. Suarez-Guevara, P. Gomez-Romero

Electrochemical Capacitors Based on Nitrogen-Enriched Cobalt (II)
Phthalocyanine/Multi-walled Carbon Nanotube Nanocomposites
J. Lekitima, K. I. Ozoemen, N. Kobayashi
Chapter 3

Devices and Applications

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and Evaluation of an Asymmetric Capacitor with a Nickel/Carbon Foam Positive Electrode</td>
<td>135</td>
</tr>
<tr>
<td>B. C. Cornilsen, J. Wang, P. Sathan Kuttipillai, T. N. Rogers, W. N. Yeo, M. B. Chye, A. Singh Bhatia</td>
<td></td>
</tr>
<tr>
<td>Polyacrylonitrile and 1-Ethyl-3-Methylimidazolium Thiocyanate Based Gel Polymer Electrolyte for Solid-State Supercapacitors with Graphene Electrodes</td>
<td>145</td>
</tr>
<tr>
<td>G. P. Pandey, A. C. Rastogi, C. R. Westgate</td>
<td></td>
</tr>
<tr>
<td>Novel NaClO₄ and NaPF₆ Based Non-Aqueous Electrolytes for Electrical Double Layer Capacitor Application</td>
<td>153</td>
</tr>
<tr>
<td>A. Laheäär, A. Jänes, E. Lust</td>
<td></td>
</tr>
<tr>
<td>N. Nambu, T. Satoh</td>
<td></td>
</tr>
<tr>
<td>Advances in Solid Electrochemical Capacitors</td>
<td>175</td>
</tr>
<tr>
<td>K. Lian, H. Gao, H. Wu</td>
<td></td>
</tr>
<tr>
<td>Specific Performance of Electrical Double-Layer Capacitors Based on Different Separator Materials and Non–Aqueous Electrolytes</td>
<td>181</td>
</tr>
<tr>
<td>K. Tõnurist, T. Thomberg, A. Jänes, E. Lust</td>
<td></td>
</tr>
<tr>
<td>Surface Characterization of Supercapacitor Electrodes after Long-Lasting Constant Current Tests</td>
<td>191</td>
</tr>
<tr>
<td>A. Jänes, J. Eskusson, R. Kanarbik, E. Lust</td>
<td></td>
</tr>
<tr>
<td>Testing of MnO₂ Aqueous Hybrid Supercapacitors under Extreme Climatic Conditions</td>
<td>199</td>
</tr>
<tr>
<td>A. J. Roberts, R. C. T. Slade</td>
<td></td>
</tr>
<tr>
<td>Electrochemical Capacitor Usable Power for Hybrid Electric Vehicle Applications as Determined from Transient Electrical Response</td>
<td>211</td>
</tr>
<tr>
<td>D. A. Corrigan, C. Fortin, A. Zabik</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics in Porous Electrodes: A Monte Carlo Simulation Study</td>
<td>223</td>
</tr>
<tr>
<td>K. Kiyohara, K. Asaka</td>
<td></td>
</tr>
</tbody>
</table>
Development of Solid-State Photo-Supercapacitor by Coupling Dye-Sensitized Solar Cell Utilizing Conducting Polymer Charge Relay with Proton-Conducting Membrane Based Electrochemical Capacitor

Influence of Yttrium Addition on the High Capacitance of ZrO2-SiO2 Nanocomposite Anodic Oxide Films

M. Ishizuka, E. Tsuji, Y. Aoki, A. Hyono, T. Ohtsuka, N. Sakaguchi, S. Nagata, H. Habazaki

Author Index
Having power and energy characteristics between batteries and conventional capacitors, electrochemical capacitors offer new opportunities in electrical engineering and a fertile ground for the development and refinement of new electrode materials. This chapter will begin by introducing the fundamentals of electrochemical double-layer capacitors and pseudocapacitors (Sect. 17.1). It will go on to describe the most commonly used methods (Sect. Testing Electrochemical Capacitors-Electrochemical Impedance Spectroscopy. This note describes electrochemical techniques for energy-storage devices. Electrochemical Impedance Spectroscopy. EIS is a widely used technique to investigate electrochemical systems. The advantage of EIS is that it is generally non-destructive to the investigated system. This enables the possibility for further electrochemical measurements and post-mortem investigations.
For electrochemical capacitors of the system carbon-carbon, in spite of the fact that the electrode body consists of conductive activated carbon, it is always necessary to use highly conducive additives, preferably those selected from the group of carbon materials. Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement